1) A resistance carries a current of 2 A . When its ends are connected to a copper wire, of negligible resistance, i.e. when it is short circuited, then current through it will be
2) In the given figure, $V_{1}$ is
- 1) $\frac{200}{3} V$
- 2) $\frac{100}{3} V$
- 3) $\frac{50}{3} V$
- 4) 50 V
Hint: $V_{1}=iR R_{1}=(\frac{V}{R_{1}+R_{2}}) R_{1}$ $( (\frac{100}{25+50}) \times 25=\frac{100 \times 25}{75}=\frac{100}{3} V)$
3) In the given figure, current through $6 \Omega$ is
- 1) 1.5 A
- 2) 1.2 A
- 3) 0.8 A
- 4) 1.8 A
Hint: If $i_{1}$ be current in $6 \Omega$ and $(i-i_{1})$ be current through $9 \Omega$. $\therefore 6 i_{1}=9(i-i_{1})$ $(6 i_{1}=9 i-9 i)$ $(15 i_{1}=9 \times 3)$ $(i_{1}=\frac{27}{15}=1.8 A)$
4) In the given figure, applied voltage V is (All resistances are in $\Omega$ )
- 1) 35 V
- 2) 45 V
- 3) 50 V
- 4) 55 V
Hint: $V_{2}=V_{3}$ $(20 \times 0.5=10 \times i_{2})$ $(i_{2}=1 A)$ $(i=i_{1}+i_{2}=0.5+1=1.5 A)$ $(V_{1}=30 i=30 \times 1.5=45 V)$ $(V_{2}=20 \times 0.5=10 V)$ $(V=V_{1}+V_{2}=45+10=55 V)$
5) Current through $40 \Omega$, $60 \Omega$ and $20 \Omega$ resistance, respectively
- 1) 6 A each
- 2) 2 A each
- 3) $6 A, 4 A, 12 A$
- 4) $12 A, 4 A, 6 A$
Hint: The circuit becomes $i_{1}=\frac{240}{40}=6 A$ $i_{2}=\frac{240}{60}=4 A$ $i_{3}=\frac{240}{20}=12 A$
6) Two resistors, $X$ and $Y$, having resistances $R$ each, are connected in series across a potential difference $V$. When a resistance R is connected in parallel to Y , the percentage change in the potential difference across it will be
- 1) $17 \%$
- 2) $25 \%$
- 3) $-17 \%$
- 4) $-25 \%$
Hint: $$ \begin{aligned} & % \Delta V=\frac{\frac{V}{3}-\frac{V}{2}}{V} \times 100 \\ & =-\frac{V / 6}{V} \times 100=-\frac{100}{6}=-17 % \end{aligned} $$
7) To use a bulb, rated at $20 V, 6 W$, with a 200 V source, you have to connect a resistance
- 1) in parallel with the bulb.
- 2) in series with the bulb.
- 3) in series or in parallel with the bulb.
- 4) none of the above
Hint: By connecting a resistance in series, 200 V gets divided into 2 parts, 20 V are as bulb and 180 V are as resistance.
8) In the accompanying circuit, if the resistance of $R_{2}$ is decreased, then
- 1) the current through $R_{1}$ increases.
- 2) the current through $R_{1}$ remains constant.
- 3) the voltage drop across $R_{2}$ decreases.
- 4) the power dissipated by $R_{2}$ decreases.
9) Three conductors draw currents of $1 A, 2 A$ and 3 A respectively when connected in turn across a battery. If the series combination of them is connected across the same battery, the current drawn will be
- 1) 5 A
- 2) >1 A but < 2 A
- 3) < 1 A
- 4) $\frac{5}{7} A$
10) If the current I in the given circuit is 0.1 A , then $R=$
- 1) $3 \Omega$ $30 \Omega$
- 2) $30 \Omega$
- 3) $60 \Omega$
- 4) $300 \Omega$
Hint: $R_{eff }=R||(R+R)=R|| 2 R=\frac{2 R}{3}$ $(R_{eff}=\frac{V}{I}=\frac{4}{0.1}=40 \Omega)$ $(\frac{2 R}{3}=40)$ $(R=\frac{40 \times 3}{2}=60 \Omega)$
11) In the circuit shown below, the total resistance of the circuit between points $P$ and $Q$ is also equal to $R$. The value of the unknown resistor $R$ is
- 1) $3 \Omega$
- 2) $\sqrt{39} \Omega$
- 3) $\sqrt{69} \Omega$
- 4) $10 \Omega$
Hint: $R=3+\frac{10 \times(3+R)}{10+(3+R)}$ $(R-3=\frac{(30+10 R)}{(13+R)})$ $((R-3)(R+13)=10 R+30)$ $(R^{2}-3 R+13 R-39=10 R+30)$ $(R^{2}=69)$ $(\therefore R=\sqrt{69} \Omega)$
12) The current through the $4 \Omega$ resistor is
- 1) 0.5 A
- 2) 0.4 A
- 3) 3 A
- 4) 0.3 A
Hint: $R_{eff }=[4||12]+2=3+2=5 \Omega$ $(I=\frac{V}{R_{eff}}=\frac{2}{5}=0.4 A)$ Voltage across $4 \Omega$ is $(V_{1}=IR=0.4 \times 3=1.2 V)$ $(I_{1}=\frac{V_{1}}{R_{1}}=\frac{1.2}{4}=0.3 A)$
13) Two resistors P and $Q(P>Q)$ are connected in series as shown in figure. With the usual symbols, which of the following is NOT true?
- 1) $V_{AB}>V_{BC}$
- 2) $V_{C}
- 3) $I_{1}=I_{2}=I_{3}$
- 4) $V_{B}>V_{A}$
Hint: For series combination, $I_{1}=I_{2}=I_{3}$ As current flows from A to C , $V_{A}>V_{B}>V_{C}$ $V_{AB}=I_{1} P$ $V_{BC}=I_{2} Q$ As $(P>Q)$ and $(I_{1}=I_{2})$, $V_{AB}>V_{BC}$
14) Three voltmeters $A, B$ and C having resistances $R, \frac{3}{2} R$ and 3 R respectively are X - (A) connected as shown in the figure. When some potential difference is applied between X and Y , the respective voltmeter readings are $V_{A}, V_{B}$ and $V_{C}$. Then
- 1) $V_{A} \neq V_{B}=V_{C}$
- 2) $V_{A} \neq V_{B} \neq V_{C}$
- 3) $V_{A}=V_{B} \neq V_{C}$
- 4) $V_{A}=V_{B}=V_{C}$
Hint: $V_{A}=IR$ $(V_{B}=\frac{2 I}{3} \times(\frac{3}{2} R)=IR)$ $(V_{C}=\frac{I}{3} \times(3 R)=IR)$ $(\therefore V_{A}=V_{B}=V_{C})$