Q1. Three charges, $+q$, $+q$, $-q$, are placed at the three corners of an equilateral triangle, of side $L$. The potential energy of the system is
1) $V=0, E = 0$
2) $V=0, E \neq 0$
3) $V \neq 0, E=0$
4) $V \neq 0, E \neq 0$
Q2. Two similar charged small spheres, each having a charge $Q$ are suspended from a point by a thread of length $L$ . At equilibrium, the angle made by the threads with the vertical is $30^{\circ}$. The electrostatic PE of the system at equilibrium, is
1) $\frac{kQ^2}{L}$
2) $\frac{\sqrt{3} kQ^2}{2 L}$
3) $\frac{kQ^2}{\sqrt{3} L}$
4) $\frac{\sqrt{3} kQ^2}{L}$
Q3. P.E. of system of charges, shown in the figure, is
1) $\frac{3}{4 \pi \varepsilon_0} \frac{q^2}{r}$
2) $\frac{1}{4 \pi \varepsilon_0} \frac{q^2}{r}$
3) $-\frac{1}{4 \pi \varepsilon_0} \frac{q^2}{r}$
4) $-\frac{3}{4 \pi \varepsilon_0} \frac{q^2}{r}$
Q4. The value of $Q$ , for which the PE of system is zero, is
1) $-\frac{q}{\sqrt{2}}$
2) $-0.47 q$
3) $-\sqrt{2} q$
4) $\frac{q}{\sqrt{2}}$
Q5. Three positive charges are placed at the vertices of an equilateral triangle. A negative charge is placed at the centre of the triangle. The P.E of the system will
Q6. Three charges $1 \times 10^{-8} C$, $2 \times 10^{-8} C$ and $3 \times 10^{-8} C$ are placed at $x=1 cm$, $x=2 cm$, and $x=3 cm$, respectively, on x -axis from the origin. The potential energy of this arrangement relative to the potential energy for infinite separation is
1) $7.9 \times 10^{-2} J$
2) $8.55 \times 10^{-4} J$
3) $6.5 \times 10^{-7} J$
4)
Hint: $U = U_1 + U_2 + U_3$ $=$ $\frac{1}{4\pi\varepsilon_0}(\frac{q_1 q_2}{r_{12}}+\frac{q_2 q_3}{r_{23}}+\frac{q_1 q_3}{r_{13}})$ $=$ $9 \times 10^9 \times [ \frac{2 \times 10^{-16}}{1 \times 10^{-2}} + \frac{6 \times 10^{-16}}{1 \times 10^{-2}} + \frac{3 \times 10^{-16}}{2 \times 10^{-2}} ]$ $=$ $9 \times 10^9 \times [ (2 + 6 + 1.5) \times 10^{-14} ]$ $=$ $9 \times 10^9 \times 9.5 \times 10^{-14} = 8.55 \times 10^{-4} J$