1) An uniformly accelerated body travels a distance of 24 m in $(5^{\text{th}})$ second of its motion and 44 m in $(15^{\text{th}})$ sec of its motion. The acceleration of the particle will be
1) $(1 m / s^{2})$
2) $(2 m / s^{2})$
3) $(4 m / s^{2})$
4) $(0.5 m / s^{2})$
Hint: $$s_n=u+\frac{1}{2}g(2n-1)$$
$$24=u+\frac{9a}{2}$$ (i)
$$44=u+\frac{29a}{2}$$ (ii) (ii) - (i) gives
$$20=10a$$
$$a=2 m / s^{2}$$
2) A body, starting with some velocity, experiences uniform acceleration. It travels a distance of 20 m in $(5^{\text{th}})$ second and 36 m in $(9^{\text{th}})$ second. The acceleration of the particle (in $(m / s^{2}))$ is
Hint: $$s_n=u+\frac{1}{2}g(2n-1)$$
$$20=u+\frac{9a}{2}$$ (i)
$$36 = u + \frac{17a}{2}$$ (ii) - (i) gives
$$16=4a$$
$$a = 4 m/s2$$
3) A particle starts moving along a straight line with velocity ' $(u)$ ' and a constant acceleration ' $(a)$ ', the initial velocity is
1) $(1 m / s)$
2) $(-1 m / s)$
3) $(2 m / s)$
4) $(-2 m / s)$
Hint: $$s_9=u+\frac{1}{2}(4)[2(9)-1]$$
$$36=u+34$$
$$u=2 m / s$$
4) A particle starts moving along a straight line with velocity ' $(u)$ ' and a constant acceleration ' $(a)$ ', the distance it travels in $(15^{\text{th}})$ second is
1) 54 m
2) 58 m
3) 60 m
4) 64 m
Hint: $$s_n=u+\frac{1}{2}g(2n-1)=2+\left[\frac{1}{2} \times 4 \times 29\right]=2+58=60 m$$